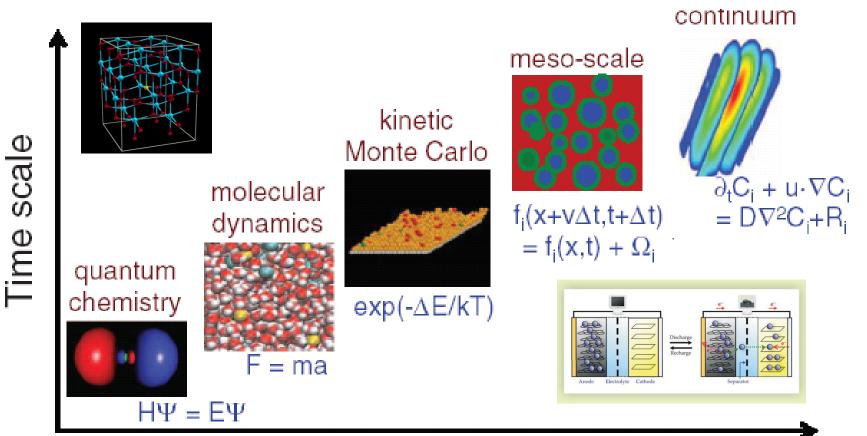
平成27年12月24日

化学システム工学基礎論


「エネルギー変換の理論計算化学」

山下晃一

計算物質科学

Length scale

化学反応論

理論化学・計

算

化

学

ダイナミクス

古典軌跡法 量子散乱理論 量子波束法

化学統計力学

分子動力学法 モンテカルロ法 経路積分法

量子化学

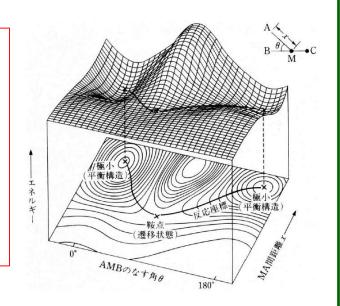
Pople

電子状態理論

Karplus Levitt Warshel

QM/MM, ONIOM

化学反応論 Eyring


遷移状態・絶対反応速度論 ポテンシャル面

福井謙一

HOMO-LUMO相互作用 極限的反応経路

Marcus

溶液内電子移動反応速度

Ab initioケミストリー

"on the fly"

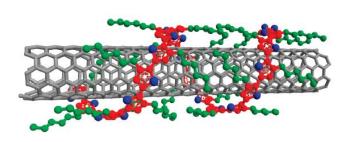
Ab initio分子動力学法 Ab initio経路積分法 Ab initio電子ダイナミクス

計算物質科学

エネルギー 変換

超並列計算

物性物理・計算物理


バンド理論

Kohn

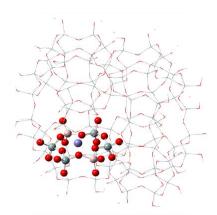
密度汎関数法 時間依存密度汎関数法

Computational Materials Science For Energy Conversion

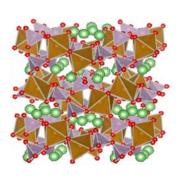
Photon E_v

Photovoltaic Solar Cells

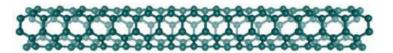
Woe-h

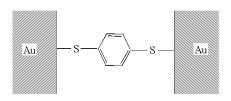

with e-h

with e-h

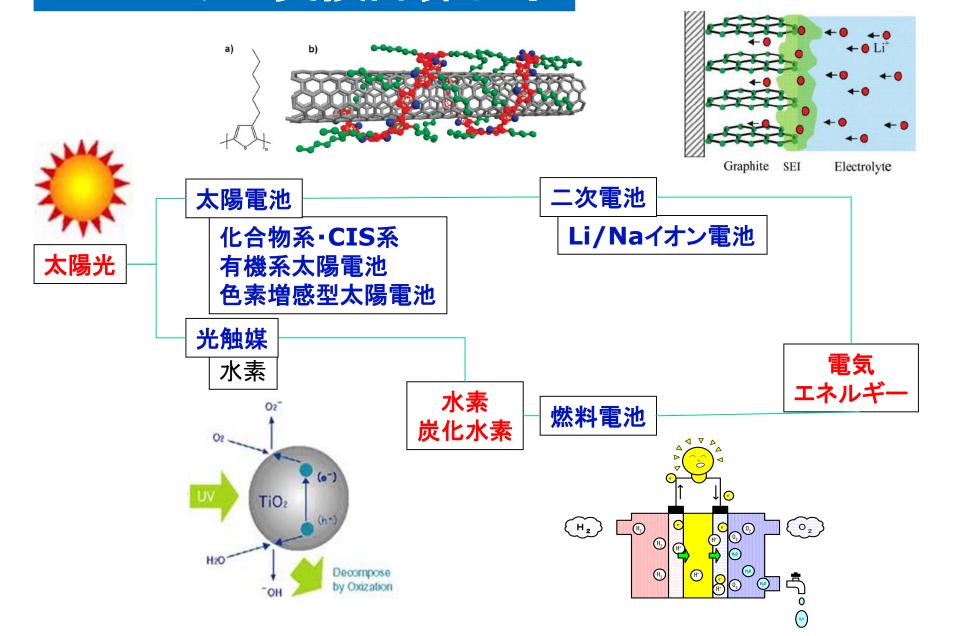

and a second s

Photocatalysis


Interfacial Carrier Transport


Automobile Catalysis

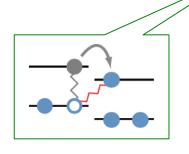
Rechargeable Battery



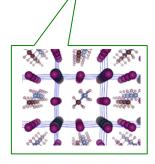
Thermal Transport

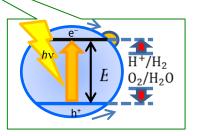
Molecular Electronics

エネルギー変換計算化学



太陽光エネルギー変換過程




キャリアを高効率に生成・利用する

有機薄膜太陽電池

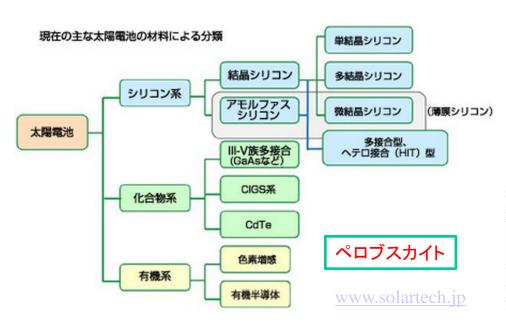
ペロブスカイト太陽雷池

水分解光触媒

エキシトンの生成 →エキシトンの解離によるキャリアの生成 →キャリアの拡散

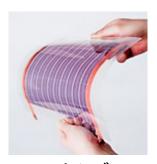
界面でのキャリア再結合

有機物の誘電率が小さい →変換効率が低い


自由キャリアの生成

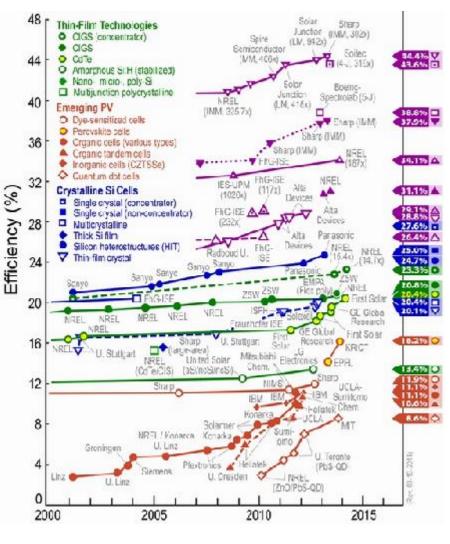
キャリアの寿命が長い →高い変換効率

キャリアの生成と緩和過程? 酸化還元反応


→変換効率が低い

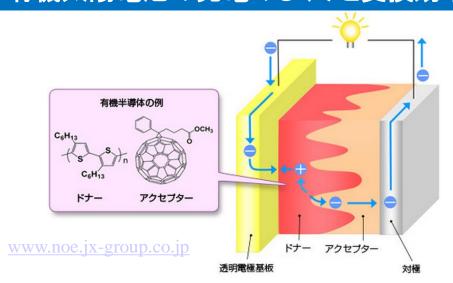
太陽電池の種類と変換効率の推移

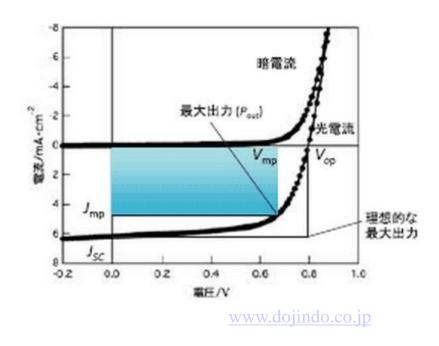
有機太陽電池のメリット

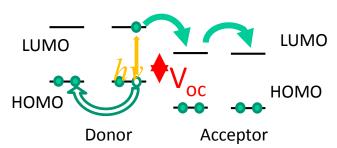

・塗るだけ、大規模化、資源的優位性、生産コスト

フレキシブル

屋根に有機薄膜太陽電池を設置


http://www.nrel.gov/ncpv/images/efficiency_chart_jpg


www.sumitomo-chem.co.jp


www.nikkei.con

有機太陽電池材料の設計

有機太陽電池の発電のしくみと変換効率

エネルギー変換効率

 $V_{\rm oc}$: 閉放端電圧

 $J_{ ext{SC}}$: 短絡電流密度

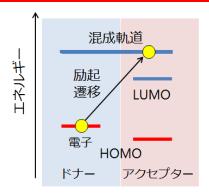
FF:曲線因子

$$\eta = \frac{J_{\rm sc}V_{\rm oc}FF}{P_{\rm in}}$$

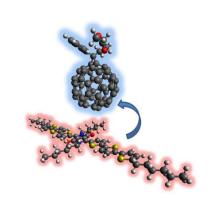
内部量子効率

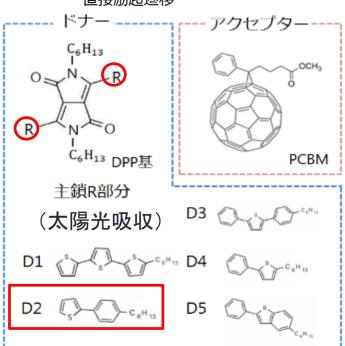
 $\eta_{\text{IQE}} = \eta_{\text{A}} \eta_{\text{ED}} \eta_{\text{CT}} \eta_{\text{CC}}$

シリコン太陽電池


Shockley-Queisser理論限界 <31%

有機系太陽電池 理論限界~20-24%8


課題 有機太陽電池材料の設計


J_{sc}向上への設計指針:界面電荷移動型光励起

高効率なドナーは光励起により 直接電荷移動している (界面電荷移動型光励起)

直接励起遷移

励起スペクトルの理論計算

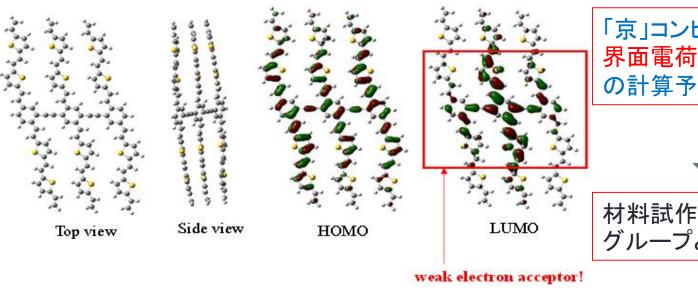
- 光励起による双極子変化 Δ μ ge
- $lacksymbol{\blacksquare}$ 光励起による電荷移動量 $\Delta C_{
 m ge}$

Donor	$J_{ m SC}$ [mA/cm 2]	Δ μ _{ge} [D]	$\Delta~\mathcal{C}_{ m ge}$ [a.u.]
D1	- 2.13	3.73	0.462
D2	- 5.74	4.05	-0.461
D3	- 0.88	2.88	-0.002
D4	-1.52	3.89	-0.195
D5	- 0.67	2.18	0.091

J_{sc}実験(九大院安田琢磨教授)

課題 有機太陽電池材料の設計

高比誘電率有機材料の理論設計に成功


比誘電率増加による電子—正孔間クーロン引力減少

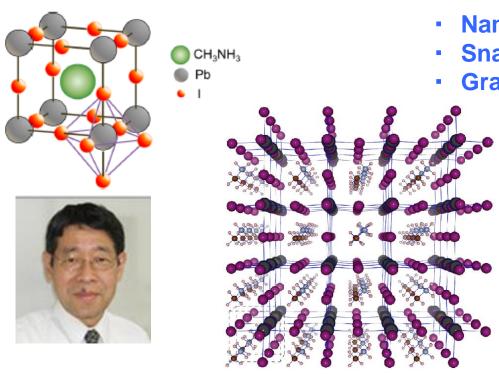
フリーキャリア―への容易な解離

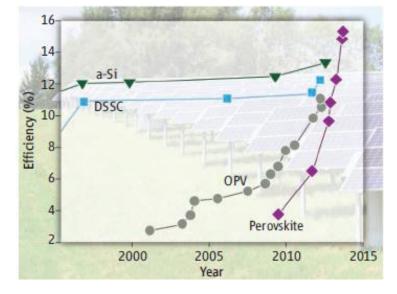
J_{SC}、V_{OC}の増加

設計コンセプト: π 共役高次元化による分極率の増加

「京」コンピュータによる 界面電荷移動型光励起) の計算予測

材料試作に向けた合成グループとの共同研究

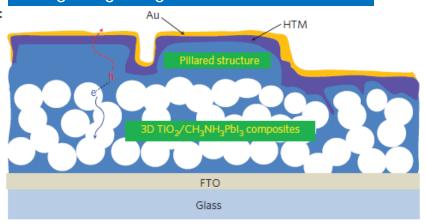

 $\varepsilon_r = 13.6$

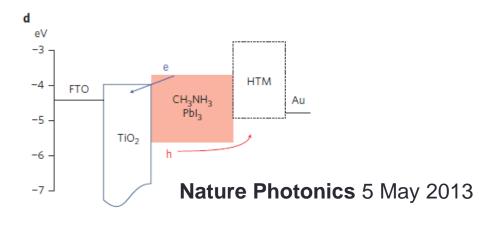

課題 ペロブスカイト太陽電池の機構解明

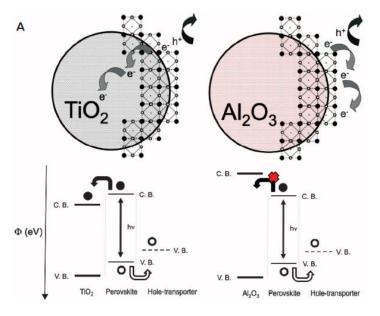
メチルアンモニウム鉛ペロブスカイト(CH₃NH₃Pbl₃)

- Nam-Gyu Park (2011, PCE=6.5%)
- Snaith Group (2012, PCE=12%)
- Gratzel, Seok Group (2012, PCE=12%)

J. Phys. Chem. Lett. 2013, 4, 2597-2598


- D. Weber (1978)
- 発光材料
- 宮坂グループ(横浜桐蔭大) (良く光る材料は良く光を吸収する) 太陽電池光吸収材料(2009、PCE=3.8%)

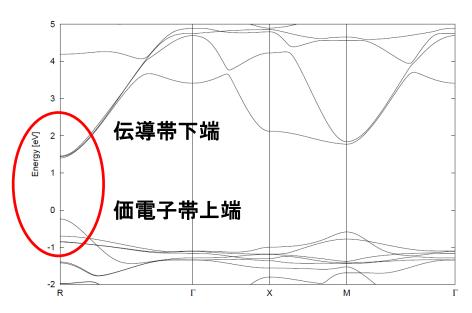


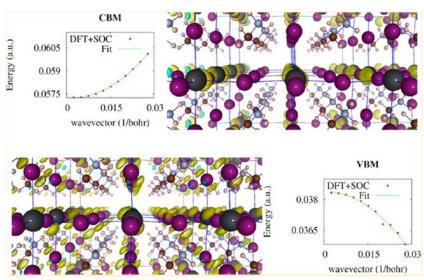

課題 ペロブスカイト太陽電池の機構解明

CH₃NH₃Pbl₃のブレークスルー

光吸収材料 Ambipolar電荷輸送材料 ・電子輸送・ホール輸送

- 光誘起物性の解明
- 非鉛化に向けた材料設計




課題2 ペロブスカイト太陽電池の機構解明

Ambipolarな電荷輸送性の理論的解析

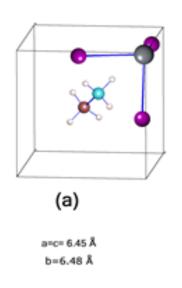
Giorgi, Fujisawa, Segawa, Yamashita, J. Phy. Chem. Lett., 4, 4213 (2013)

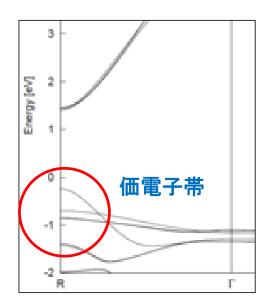
伝導帯下端と価電子帯上端の曲率からキャリアの有効質量を計算

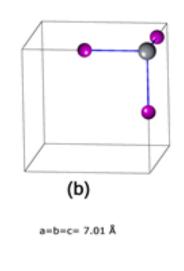
- 有効質量 m_p*=0.29 m_o
- $m_e^* = 0.23 \ m_o$
- ほぼシリコンと同じ キャリアの高伝導性

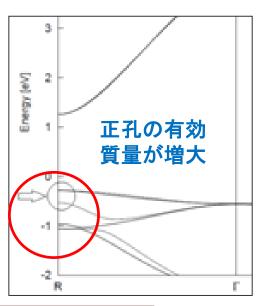
伝導帯下端:鉛 6p軌道+ヨウ素 5s軌道 価電子帯上端:鉛 6s軌道+ヨウ素 5p軌道

電子と正孔の伝導パスの分離性




課題2 ペロブスカイト太陽電池の機構解明




有機化合物(メチルアンモニウム)の役割を解明

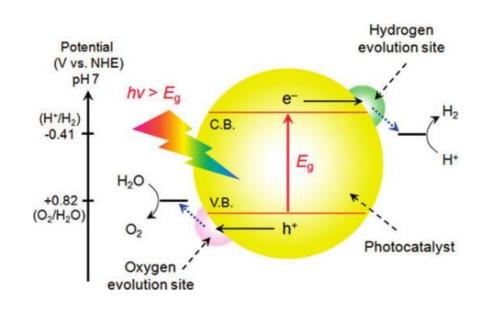
Giorgi, Fujisawa, Segawa, Yamashita, J. Phy. Chem. C, 118, 12176 (2014)

メチルアンモニウムカチオン Pbl₃骨格は負電荷をもつ

クーロン相互作用による格子の収縮

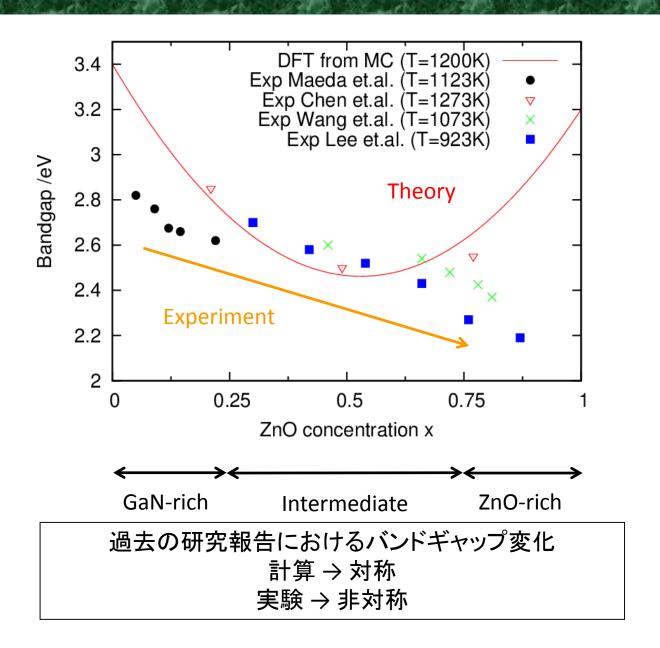
反結合性の価電子帯の エネルギー準位が上昇

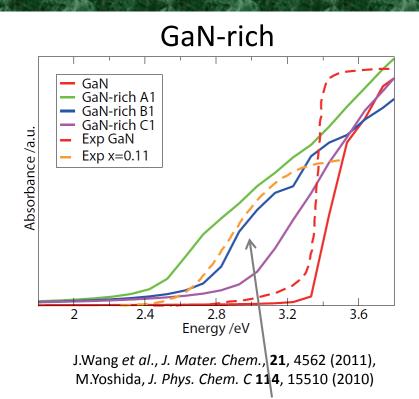
非結合性の価電子帯のエネルギー準位は変化しない

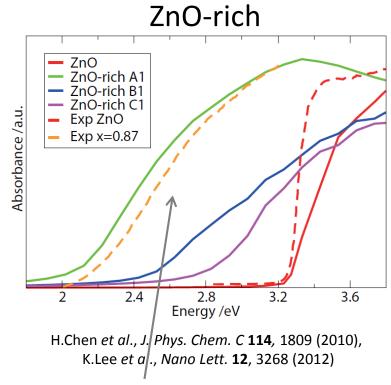

メチルアンモニウムカチオンによりAmbipolarな電荷輸送性が発現

可視光応答性光触媒系の探索

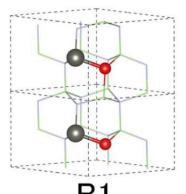
光触媒材料のスクリーニング

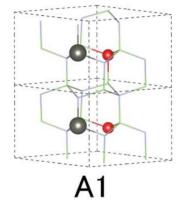

- $(Ga_{1-x}Zn_x)(N_{1-x}O_x)$
- Ta_3N_5
- TaON
- ペロブスカイト酸窒化物 BaTaO₂N, LaTiO₂N
- La₅Ti₂MS₅O₇ (M=Cu,Ag) ドーピング (La, Ti)


- バンドギャップ・エンジニアリング
- バンドエッジ・アライメント
- ・光誘起キャリア輸送

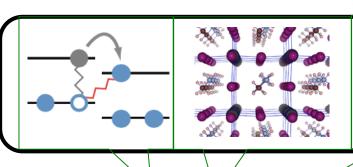

- ① 光吸収によるキャリア生成
- ② キャリアの表面への拡散
- ③ 表面での酸化・還元反応

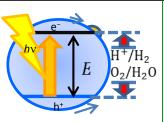
組成比変化に対するバンドギャップ非対称性


BSE計算と実験の吸光度との比較



B1 (Zn-N **9.375** %)


A1 (Zn-N 12.5 %)



- VBがZn-N結合に局在化しているため 不純物準位のようなBroadなスペクトル
- ZnO-rich 固溶体には Zn-N 結合が より多く含まれている

太陽光エネルギー高効率利用

相界面光誘起現象の素過程

エネルギー変換計算科学 実証実験研究

- 有機系(有機/有機、有機/無機)太陽電池
 - 電荷分離過程の解明による光電変換効率向上
 - ・ナノスケールモルフォロジーの最適化によるエネルギー変換効率向上
 - 新規有機薄膜太陽電池材料の探索
 - 有機金属ペロブスカイト材料の光誘起物性の解明と新規材料探索
- 光触媒相界面
 - バンドギャップ・エンジニアリング、バンドエッジ・アライメント制御
 - ・光触媒機能の基礎学理と光触媒材料のスクリーニング